
{SetØy}: Optimizing a Set Language Project Proposal

Adam Blank (adamblan@cs) and Andrey Kostov (akostov@andrew)

Web Page
The project web page can be found at:

http://countablethoughts.com/setty

This page will be periodically updated with our progress and any write-ups.

Description
The {SetØy} Programming Language

{SetØy} is a toy programming language that Adam created to supplement teaching logic and sets to
computer science freshmen. A typical {SetØy} program looks like the following:

1 is_prime(x) := x 6= 0 ∧ x 6= 1 ∧ ¬∃(a ∈ [x−1] \ {1}). ∃(b ∈ [x−1] \ {1}). x = a*b
2 prime_factors(n) := {x | x ∈ [n] ∧ is_prime(x) ∧ ∃(y ∈ [n]). n = x*y}
3

4 U := 10
5

6 for i to U:
7 print i, "is prime?", is_prime(i)
8

9 for i to U:
10 print i, prime_factors(i)

In {SetØy}, the only primitive type available to users is a set. Natural numbers, pairs, lists, etc. can all
be implemented on top of them.

Optimization Opportunities

Set Re-use. Currently, the compiler creates a new set every time the user requests one. So,
a {SetØy} program:

1 s := {}
2 t := {}
3 r := {}
4 print s, t, r

would create three empty sets. Since sets are not mutated, this is extremely inefficient.
For this optimization, we will make the {SetØy} compiler (1) re-use sets whenever possi-
ble and (2) keep track of liveness of sets in preparation for the other two optimizations.
Since sets are malloced, this optimization should save a significant amount of both time
and space.

Inference of Universe. In many of the high-level constructs (universal, existential, and set
comprehension statements), the {SetØy} compiler needs a universe for any free variables.

1

http://countablethoughts.com/setty


Often, the user specifies these directly, but this can be painful (and users often specify
larger sets than necessary). The goal of this optimization is two-fold: (1) automatically
infer the universe of free variables whenever possible, (2) refine both these predictions
and user-specified universes using information from the set re-use pass.

Purity Checking. The vast majority of {SetØy} functions are pure. It would save a signif-
icant amount of time if we automatically memoized function values upon determining
that the function is pure.

Metrics for Evaluation

We plan to test our optimizations by looking at (1) the number of dynamic instructions run as in
assignment 3, and (2) the memory footprint of various test cases. Several interesting {SetØy} programs
already exist for testing correctness of the interpreter and compiler. As part of the project, we will develop
more tests that form a reasonable benchmark for the compiler as well as our optimizations.

Goals

75% Goal. Our 75% goal is to implement one of Set Re-use, Optimizing QBFs, and Infer-
ence of Universe.

100% Goal. Our 100% goal is to implement two of Set Re-use, Optimizing QBFs, and
Inference of Universe.

125% Goal. Our 100% goal is to implement three of Set Re-use, Optimizing QBFs, and
Inference of Universe.

Logistics
Plan of Attack

Week Tasks
1 Continue working on the compiler (Adam)

Review compiler code-base (Andrey)
2 Begin work on set-reuse (Adam, Andrey)
3 Finish set-reuse; begin inference of universe (Adam, Andrey)
4 Finish inference of universe (Adam, Andrey)

Begin purity checking (Adam, Andrey)
5 Finish purity checking (Adam, Andrey)

Begin benchmark suite (Adam, Andrey)
6 Finish benchmark suite; fix bugs; reporting (Adam, Andrey)

Milestone

Our milestone is completing our 75% goal.

2



Resources Needed

The {SetØy} compiler is written in python and targets llvm. As such, it depends on ply (python bindings
for yacc and flex), llvm-py (python bindings for llvm), llvm, and python. The toolchain is already
set up and working on several machines.

Work to Date

Adam has written a parser, interpreter, and partial compiler for {SetØy}. Parts of the compiler that are
unimplemented (e.g. set comprehensions) are blocking later work, but we can begin on the first goal
immediately.

References
Literature on set-based languages is (un)fortunately sparce. There are several papers ([1][2]) about one
existing language (SETL) which we have read:

[1] Stefan M. Freudenberger, Jacob T. Schwartz, and Micha Sharir. “Experience with the SETL Op-
timizer”. In: ACM Trans. Program. Lang. Syst. 5.1 (Jan. 1983), pp. 26–45. issn: 0164-0925. doi:
10.1145/357195.357197. url: http://doi.acm.org/10.1145/357195.357197.

[2] J. T. Schwartz. “Automatic and semiautomatic optimization of SETL”. In: SIGPLAN Not. 9.4 (Mar.
1974), pp. 43–49. issn: 0362-1340. doi: 10.1145/942572.807044. url: http://doi.acm.org/
10.1145/942572.807044.

3

http://dx.doi.org/10.1145/357195.357197
http://doi.acm.org/10.1145/357195.357197
http://dx.doi.org/10.1145/942572.807044
http://doi.acm.org/10.1145/942572.807044
http://doi.acm.org/10.1145/942572.807044

