
Adam Blank
E-mail: blank@caltech.edu
Web: https://www.countablethoughts.com
Address: 1200 E California Blvd

MC 305-16
Pasadena, CA 91125-0001

Phone: (626) 395-1765

Personal
Information

Teaching Professor 2022 –
Computing and Mathematical Sciences, California Institute of Technology, Pasadena CA

Teaching Assistant Professor 2020 – 2022
Computing and Mathematical Sciences, California Institute of Technology, Pasadena CA

Lecturer 2018 – 2020
Computing and Mathematical Sciences, California Institute of Technology, Pasadena CA

Lecturer 2014 – 2018
Computer Science and Engineering, University of Washington, Seattle WA

Employment

Carnegie Mellon University 2012 – 2014
Master of Science in Computer Science
Thesis: Technological and Pedagogical Innovations for Teaching Introductory

Discrete Mathematics to Computer Science Students
Advisors: Randy Bryant, Klaus Sutner

Carnegie Mellon University 2008 – 2012
Bachelor of Science in Computer Science, Minor in Mathematics

Education

TA TA TA TA TA TA I I I I I I I I I I I

I M I I I I I I I I I I I

08au 12au 14au 17au

17au 18fa 21fa

CMU (Undergrad) CMU (Grad) UW

UW Caltech

Mathematical Foundations of CS CS2 Data Structures
Algorithms in the Real World Software Design Computing Systems

TA Teaching Assistant I Instructor M Mentor

New Horizons Diversity, Equity and Inclusion Award 2022Honors
Northrop Grumman Prize for Excellence in Teaching 2021
CMS and IST Gradient for Change Award 2021
Caltech ASCIT Teaching Award 2019
UW CSE ACM Teaching Award 2018
UW CSE ACM Teaching Award 2017
Alan J. Perlis Undergraduate Student Teaching Award 2012
Honorable Mention for CRA Outstanding Undergraduate Award 2012

mailto:blank@caltech.edu
https://www.countablethoughts.com


CCSC:SW Program Committee Member 2019Professional
Service SIGCSE Organizing Committee Member 2018-2024

Caltech Membership and Bylaws Committee 2023 –Institute
Service Caltech Ad Hoc Committee on SETs Reform, co-chair 2022 –

Caltech Undergraduate Academic Standards and Honors Committee 2022 –
EAS Diversity, Equity, and Inclusion Committee 2021 –
Undergraduate House Renaming Committee 2021 – 2021
CMS Diversity, Equity, and Inclusion Steering Committee 2020 –
Caltech Undergraduate CS Option Representative 2020 –
Caltech Freshman Admissions Committee 2020 – 2022
Caltech Freshman Advisor 2019 –
CMS Computing Resources Working Group 2019 –
CMS Teaching Assistant Professor Hiring Committee 2019 – 2020
Member of Student/Faculty Conference Committee for CS 2018, 2020
Co-designing and Leading Upper Division TA Training (UW CSE) 2016 – 2018
Member of UW Evidence-based Teaching and Learning Community 2015 – 2018
UW CSE ACM Student Chapter Advisor 2016 – 2018
UW CSE Scholarship Committee 2015 – 2018
CMU SCS CSD Teaching Assistant Advisory Committee 2012 – 2014

Yakov Shalunov (2022-2023). SURF project on complexity decider for a subset of Python.Advising
(Projects) Archie Shahidullah (2020-2021). SURF project on data structures tests for CS 2.

Devin Chotzen-Hartzell (2020-2021). SURF project on a Java Visualizer for IntelliJ.

2023: 8 freshman advisees, ≈47 upperclass adviseesAdvising
(Academic) 2022: 8 freshman advisees, ≈37 upperclass advisees

2021: 8 freshman advisees, 37 upperclass advisees
2020: 8 freshman advisees, 26 upperclass advisees
2019: 8 freshman advisees, 10 upperclass advisees

Ethan Ordentlich (2018–2023). (first job: Lecturer at UIC)Advising
(Teaching) El Hovik (2015–2020). (first job: Teaching Assistant Professor at Caltech)

Nicole Riley (2015–2018) (first job: Microsoft)
Michael Lee (2015–2018). (first job: Dropbox)
Evan McCarty (2015–2018). (first job: Lecturer at UIC)
Riley Porter (2015–2016). (first job: Lecturer at University of Washington)

CS 137: Algorithms in the Real WorldTeaching
(Caltech) Instructor (Fall 2018, Spring 2021)

30 students
This course introduces algorithms in the context of their usage in the real world. The course covers
compression, advanced data structures, numerical algorithms, cryptography, computer algebra, and
parallelism. The goal of the course is for students to see how to use theoretical algorithms in real-
world contexts, focusing both on correctness and the nitty-gritty details and optimizations.

CS 2: Introduction to Programming Methods
Instructor (Winter 2019, Winter 2020, Winter 2021)
140− 190 students
This course is “CS2” in Java at Caltech. In Winter 2019, I rebooted this course to focus more on data
structures. It introduces students to ADTs, and we implement a variety of data structures like Binary
Trees, Hash Tables, and Graphs.

CS 3: Introduction to Software Design



Instructor (Spring 2019, Spring 2020, Spring 2021)
55− 130 students
This course is a practical introduction to designing large programs in a low-level language. Heavy
emphasis is placed on documentation, testing, and software architecture. Students will work in teams
in two 5-week long projects. In the first half of the course, teams will focus on testing and extensibility.
In the second half of the course, teams will use POSIX APIs, as well as their own code from the first
five weeks, to develop a large software deliverable. Software engineering topics covered include code
reviews, testing and testability, code readability, API design, refactoring, and documentation. In Spring
2019, I rebooted this course, as it hadn’t been taught in several years. The goal is to get students to
(1) learn C,(2) write good code (rather than just code that “works”), and (3) prepare them for CS 24.

CS 24: Introduction to Computing Systems
Instructor (Spring 2019, Fall 2019, Fall 2020)
70− 90 students
This course is a traditional introduction to computing systems. Various parts of the system are exam-
ined and implemented. In Fall 2019, I re-designed this course to focus more on skills all programmers
need rather than skills systems programmers need.

CSE 143: Computer Programming IITeaching
(UW) Instructor (Spring 2015, Autumn 2015, Autumn 2016)

Co-instructor (Winter 2015)
160− 700 students
This course is “CS2” in Java at UW. It introduces students to ADTs, and we implement simple data
structures like Linked Lists and Binary Trees. The students are very varied. In Autumn 2015, I taught
“CSE 143X” which combines CS1 and CS2 into a single 10 week course.

CSE 390H: CSE 143 Honors Seminar
Instructor (Autumn 2014, Winter 2015, Spring 2015, Autumn 2015)
50 students
This is a seminar accompanying CSE 143. The only stated course goal is to get students interested in
Computer Science. We discussed a wide variety of topics such as steganography, combinatorial games,
esoteric programming languages, and cryptograms.

CSE 311: Foundations for Computing I
Instructor (Spring 2016, Spring 2017)
Co-instructor (Autumn 2014)
100− 140 students, all new majors
UW CSE Students take this course in their first quarter in the major. CSE 311 combines many of the
traditional introductory discrete math topics (e.g., logic, proofs, number theory, sets, relations, various
types of induction) with some introductory computability material (e.g., regexps, CFGs, DFAs, NFAs,
irregularity, uncomputability). I developed several online homework “autograders” for this course which
I have helped other instructors integrate into their offerrings.

CSE 332: Data Structures & Parallelism
Instructor (Autumn 2015, Winter 2016, Winter 2017)
120− 280 students



UW CSE Students take this course in their second quarter in the major. When I first taught this
course, the projects had not been changed for six years; so, I wrote new projects in which students
implement all the “back-end” data structures that make a “real world” client work. This course is
the first time students usually have projects that last several weeks; so, I introduced “checkpoints” in
which students meet with someone on course staff in an open area to dicuss aspects of the projects.
To make things run smoothly, I built some tools which integrate with gitlab continuous integration
to help monitor students for these checkpoints. Although I didn’t teach this course in Spring 2016 or
Autumn 2016, both instructors adopted my projects. In Autumn 2016, the instructor also adopted my
course policies and online exercises.

15-151: Mathematical Foundations of Computer ScienceTeaching
(CMU) Course Designer and Instructor (Fall 2012, Fall 2013)

100− 140 students, all freshmen
All computer science majors at CMU take two introductory discrete math courses: one in their first
semester and another in their second. The course taken in the spring is “15-251” (see below), and it is
traditionally a very difficult course. I created 15-151 for CS majors to make 15-251 less overwhelming.
I used programming analogies and various techniques like group work, quizzes worth no points to check
their understanding, and mechanisms/techniques to increase learning. In 2011 and 2012, I taught three
lectures of 15-151 on Monday, Wednesday, and Friday. In 2011, my mentor, Klaus Sutner, gave half
of the lectures.

21-127: Concepts of Mathematics
Teaching Assistant (Fall 2011)
200− 300 (50 in my section) students, primarily freshmen
This course is a generic introduction to discrete mathematics for various disciplines. I held recitation
for 50 students twice a week, wrote my own handouts and quizzes, wrote several of the exams, graded
for my entire recitation, and held 3-4 office hours every week.

15-131/98-172: Great Practical Ideas for Computer Scientists
Course Designer and Instructor (Fall 2011)
Co-instructor (Fall 2012)
100 students, all freshmen
A while back, CMU changed their introductory sequence to include additional content on verification
and parallelism. After this change, students needed additional background on UNIX, bash scripting,
and C debugging; so, I created 98-172, a student-taught course to fill this need. I gave lecture once
a week, and held four “lab-itations” (a cross between recitation and lab) each week as well. In Fall
2013, CMU decided to make 98-172 a course in the CS department, and I helped the effort to make
the necessary changes.

15-251: Great Theoretical Ideas in Computer Science
Head Teaching Assistant (Spring 2012)
Teaching Assistant (Fall 2010, Spring 2011, Spring 2010)
150− 200 (40 in my section) students, primarily freshmen
This course is a very difficult introduction to discrete mathematics and computability theory. It covers
a new topic every week, and the homework questions are traditionally time consuming. Every semester
I TAed, I held a recitation for around 40 students, held at least 3-4 office hours every week, developed
homework assignments and recitations, and graded. I also maintained the course submission and
grading system and over many of the semesters, I developed a new one. In Spring 2012, I had several
additional duties as the head teaching assistant. I acted as liaison between the other TAs and professors,
and I held extra “conceptual” office hours every week in which I repeated the topics from lectures for
students who were struggling. These office hours usually were attended by 20-30 students.

As a companion to my teaching, my research consists of educational technology which I often testEdTech
Projects with user studies and other formal evaluations. Many undergraduate students have contributed time



and energy to several of these projects.

Java Data Structure Visualizer 2016 – 2018
I developed two Eclipse plug-ins: EZClipse and Viz. EZClipse makes the eclipse user interface more
friendly to beginners. Viz provides a “logical visualization” of various features of Java programs during
debugging. In particular, it helps students visualize data structures, stack traces, and fields.

Induction Practice Interface 2015 – 2018
Some students and I developed an interface (and checker) for simple induction problems. We are work-
ing on extending it and using it in an introductory discrete math course for practice and homework
problems.

Online HW Problems Framework 2014 – Current
I have written online interfaces for various problems (“construct a DFA”, “insert into this AVL tree”,
etc.) in introductory discrete math and data structures courses to (1) encourage students to make
multiple attempts on a problem, and (2) speed up grading. These interfaces give minimal (but useful)
feedback, and the students are given a fixed number of attempts for each problem. I am working on
expanding and improving as many of these interfaces as possible for various courses. They are being
used by multiple instructors in both CSE 311 and CSE 332 at UW.

A compiler for introductory discrete mathematics 2012 – 2014
I designed a programming language called “Setty” and implemented a compiler. The standard library
builds naturals, pairs, etc. from sets using the standard mathematical constructions. The goal of this
language (which we used in 15-151) was to allow students to learn “the mathematical language” such
as set comprehensions like {x ∈ [5] | x > 2} and quantified statements like ∀(x ∈ [5]). x < 5 by
evaluating them in a computational environment.

Improving submission, annotation, review, and feedback of proofs 2010 – 2015
I developed a course infrastructure system that handles LaTeX submissions, annotation, grading, and
feedback of proofs. The system allows graders to first review and mark up the student submissions
while re-using comments without worrying about point values, and then apply a rubric to their reviews.
By providing an interface to easily reuse comments and update the rubric globally with a single click,
we reduce the grading time while increasing the usefulness of feedback.

Peer grading of proofs 2010 – 2014
The system we developed for submission and feedback also allowed students to anonymously review
each other’s submissions. I ran a study which showed that students who reviewed more proofs rather
than doing more proofs wrote better proofs later.

Conference
Abstracts

Panels (Panelist)
Blank, Adam (Moderator), C. Alvarado, D. Garcia, and Z. Dodds. “Undergraduate Course Assistant
Autonomy in Course Development and Teaching”. In: Proceedings of the 53rd ACM Technical Sympo-
sium on Computer Science Education V. 2. SIGCSE 2022. Providence, RI, USA: Association for Com-
puting Machinery, 2022, pp. 1065–1066. isbn: 9781450390712. doi: 10.1145/3478432.3499224.
url: https://doi.org/10.1145/3478432.3499224.
K. Walther, Blank, Adam (Moderator), M. Ball, and S. Rampure. “A New Class of Teaching-Track
Faculty: No Ph.D. Required”. In: Proceedings of the 53rd ACM Technical Symposium on Computer
Science Education V. 2. SIGCSE 2022. Providence, RI, USA: Association for Computing Machinery,
2022, pp. 1029–1030. isbn: 9781450390712. doi: 10.1145/3478432.3499227. url: https://doi.
org/10.1145/3478432.3499227.

https://doi.org/10.1145/3478432.3499224
https://doi.org/10.1145/3478432.3499224
https://doi.org/10.1145/3478432.3499227
https://doi.org/10.1145/3478432.3499227
https://doi.org/10.1145/3478432.3499227


M. Ball, A. DeOrio, J. Hsia, and Blank, Adam. “Teaching TAs to Teach: Strategies for TA Training”.
In: Proceedings of the 52nd ACM Technical Symposium on Computer Science Education. SIGCSE ’21.
Virtual Event, USA: Association for Computing Machinery, 2021, pp. 461–462. isbn: 9781450380621.
doi: 10.1145/3408877.3432579. url: https://doi.org/10.1145/3408877.3432579.
D. Garcia, I. Bezakova, Blank, Adam, and N. Terrell. “Teaching Computer Science with Abstract
Strategy Games”. In: Proceedings of the 52nd ACM Technical Symposium on Computer Science Edu-
cation. SIGCSE ’21. Virtual Event, USA: Association for Computing Machinery, 2021, pp. 1232–1233.
isbn: 9781450380621. doi: 10.1145/3408877.3432572. url: https://doi.org/10.1145/
3408877.3432572.
J. Akullian, Blank, Adam, L. Bricker, L. DuHadway, and C. Murphy. “Supporting Mental Health
in Computer Science Students and Professionals”. In: Proceedings of the 51st ACM Technical Sym-
posium on Computer Science Education. SIGCSE ’20. Portland, OR, USA: Association for Comput-
ing Machinery, 2020, pp. 958–959. isbn: 9781450367936. doi: 10.1145/3328778.3366980. url:
https://doi.org/10.1145/3328778.3366980.
M. Ball, J. Hsia, H. Pon-Barry, A. DeOrio, and Blank, Adam. “Teaching TAs To Teach: Strategies for
TA Training”. In: Proceedings of the 51st ACM Technical Symposium on Computer Science Education.
SIGCSE ’20. Portland, OR, USA: Association for Computing Machinery, 2020, pp. 477–478. isbn:
9781450367936. doi: 10.1145/3328778.3366987. url: https://doi.org/10.1145/3328778.
3366987.

Birds of a Feather (Organizer)
J. Akullian, Blank, Adam, B. Blaser, E. Garza, C. Murphy, and K. Walther. “Diversity Includes Disabil-
ity Includes Mental Illness: Expanding the Scope of DEI Efforts in Computer Science”. In: Proceedings
of the 53rd ACM Technical Symposium on Computer Science Education V. 2. SIGCSE 2022. Prov-
idence, RI, USA: Association for Computing Machinery, 2022, p. 1190. isbn: 9781450390712. doi:
10.1145/3478432.3499183. url: https://doi.org/10.1145/3478432.3499183.
J. Akullian, Blank, Adam, B. Blaser, and C. Murphy. “Supporting Computer Science Student Mental
Health through Unprecedented Times”. In: Proceedings of the 52nd ACM Technical Symposium on
Computer Science Education. SIGCSE ’21. Virtual Event, USA: Association for Computing Machinery,
2021, p. 1357. isbn: 9781450380621. doi: 10.1145/3408877.3439519. url: https://doi.org/
10.1145/3408877.3439519.

Special Session (Organizer)
J. Payton, Blank, Adam, C. Murphy, M. Hovik, K. Lin, A. Kwon, and L. McConnaughey. “Perspectives
on Allyship in Academia”. In: Proceedings of the 51st ACM Technical Symposium on Computer Science
Education. SIGCSE ’20. Portland, OR, USA: Association for Computing Machinery, 2020, pp. 1262–
1263. isbn: 9781450367936. doi: 10.1145/3328778.3366997. url: https://doi.org/10.1145/
3328778.3366997.

https://doi.org/10.1145/3408877.3432579
https://doi.org/10.1145/3408877.3432579
https://doi.org/10.1145/3408877.3432572
https://doi.org/10.1145/3408877.3432572
https://doi.org/10.1145/3408877.3432572
https://doi.org/10.1145/3328778.3366980
https://doi.org/10.1145/3328778.3366980
https://doi.org/10.1145/3328778.3366987
https://doi.org/10.1145/3328778.3366987
https://doi.org/10.1145/3328778.3366987
https://doi.org/10.1145/3478432.3499183
https://doi.org/10.1145/3478432.3499183
https://doi.org/10.1145/3408877.3439519
https://doi.org/10.1145/3408877.3439519
https://doi.org/10.1145/3408877.3439519
https://doi.org/10.1145/3328778.3366997
https://doi.org/10.1145/3328778.3366997
https://doi.org/10.1145/3328778.3366997

